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I n  the first part of this paper the nonlinear development of the most unstable mode is 
numerically studied for a bounded shear layer with a hyperbolic-tangent profile. It is 
found that the vortex nutation, discovered by Zabusky & Deem (1 971) for a jet profile, 
is a manifestation of strongly coupled oscillations in the vortex amplitude and the 
phase. I n  the second part, with the aid of the numerical result we devote ourselves to 
deriving coupled nonlicear equations that describe the amplitude oscillation, the 
vortex nutation and the momentum transport. The approximate oscillatory solution 
for the vortex amplitude and phase in the nonlineai stage is compared with the 
numerical solution and agreement is found. 

1. Introduction 
I t  is well known that a velocity shear has a great influence upon the stability of 

hydrodynamic flows and plasma flows. I n  recent years extensive numerical calcula- 
tions have been carried out to  investigate the nonlinear evolution of two-dimensional 
shear instabilities (see, for example, Levy 8: Hockney 1968; Zabusky & Deem 1971; 
Christiansen & Zabusky 1973; Tanaka 1975). These calculations have shown that 
unstable modes undergo quasi-periodic amplitude oscillations in the nonlinear stage. 

The nonlinear development of an electrostatic shear instability in a magnetized 
plasma was investigated numerically by Byers (1966) for a low density magnetized 
plasma where w:, < 51: ( w p l  is the ion plasma frequency and 51, is the ion Larmor 
frequency) and by Levy & Hockney (1968) for a low density magnetized electron 
beam. These numerical calculations have succeeded in demonstrating the formation 
of vortices. I n  particular, Levy & Hockney have recognized in their numerical experi- 
ment that there is a quasi-periodic exchange of energy between the mean flow and the 
most unstable mode. 

The hydrodynamic shear instability has a much longer history. Sat0 & Iiuriki’s 
(1961) wake experiment may be a notable classical experiment. Zabusky & Deem 
(1 971) attempted to analyse synergetically the nonlinear evolution of an unstable 
two-dimensional staggered-vortex wake. They found that even in the nonlinear stage 
the disturbance amplitude does not reach a steady state, but instead exhibits a lorn 
frequency nonlinear oscillation in conjunction with a nearly periodic phase reversal. 
They noticed that this amplitude oscillation is associated with a ‘nutation’ of the 
principal axis of an elliptical vortex with respect to the mean flow and that the nutation 
frequency is only weakly dependent on viscosity. In  addition, by examining the 
evolution of each Fourier component of the disturbance they concluded that the 
interaction between the mean flow and the most unstable mode of the disturbance is 
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responsible for the observed amplitude oscillation. Furthermore, Christiansen & 
Zabusky (1 973) have examined in detail the stability and long-time evolution of two- 
dimensional wakes. Since several fundamental characteristics inherent in the two- 
dimensional wake such as the vortex nutation and the enhanced transport associated 
with the unstable disturbance are elucidated in this work, readers should consult this 
work. It should also be noted that a simpIer example of vortex nutation was discussed 
by Moore & Saffman (1971). 

From the analytical side, much effort has so far been devoted to  the study of in- 
stabilities of parallel shear flows. Meksyn & Stuart (1951) solved a set of linearized 
equations for the most unstable mode and the mean motion to  find an equilibrium 
solution for viscous fluids. Later, Stuart (1 958) extended a nonlinear theory of parallel 
shear flows by introducing the so-called shape assumption : that  a disturbance keeps 
its initial shape during the course of nonlinear evolution. Since these authors were 
primarily interested in the equilibrium state which would be realized by the balance 
between the linear growth and the viscous dissipation, they did not notice the existence 
of a phase difference between the mean motion and the vortex motion. For an inviscid 
fluid, Schade (1964) calculated the equilibrium amplitude of a neutral disturbance. 
Recently, on the basis of the shape assumption, Tanaka (1975) has calculated the 
maximum amplitude of the most unstable mode by numerically integrating the 
amplitude equation. 

As we have seen above, considerable progress has been achieved in the under- 
standing of the nonlinear behaviour of a shear instability. Notwithstanding, the 
fundamental processes in the nonlinear stage, i.e. the quasi-periodic osciIlations in 
the amplitude and the associated quasi-periodic phase inversions observed by Levy & 
Hockney (1968), Zabusky & Deem (1971), Christiansen & Zabusky (1973) and Tanaka 
(1975), are still unresolved theoretically. The principal aim of this paper is to elucidate 
the fundamental process of the periodicity. 

I n  the conventional analysis based on the shape assumption (e.g. Stuart 1958; 
Tanaka 1975) attention was paid only to  the time evolution of the amplitude function, 
and the time evolution of the phase function was completely disregarded. Because of 
this one-sided choice they were not able to  explain the amplitude oscillation phenomena 
observed. Since the inclination of the vortex axis is mainly determined by the phase 
of the complex stream function, it is absolutely essential to take into account the 
temporal variation of the phase function as well as the amplitude function if one 
wishes to  elucidate the amplitude oscillation or the vortex ‘nutation’. 

It is to be noted that an extension of Landau-Stuart theory which expands the 
amplitude as the only small parameter cannot obtain the vortex nutation no matter 
how higher-order corrections are renormalized as was done by Michalke (1965). 

I n  $ 2  the amplitude and phase evolution of the most unstable disturbance are 
numerically examined for a bounded shear layer (i.e. a ‘tanh’ profile with boundary 
conditions at a finite distance) and a one-to-one correspondence between the evolution 
of the amplitude and that of the phase is verified. I n  the course of this numerical 
analysis it is found that the mean flow undergoes the same periodic modulation. I n  
$ 3  we devote ourselves to  developing a theory that can elucidate the fundamental 
nonlinear process producing the vortex nutation. 
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2. Numerical results 

for the vorticity <(r, y, t )  is written as 
Let us consider a two-dimensional inviscid fluid flow in the x, y plane. The equation 

with 

ac a< ac -+u-+v- = 0, 
at ax ay 

(2.2 a-c) 

where I$ is the stream function. 
We assume that the undisturbed flow velocity V has only a y component and is 

sheared in the x direction, i.e. V = (0, V(x),O). As the profile of V ( x )  we adopt a 
hyperbolic-tangent velocity profile (' tanh ' profile) such that 

V(x) = V(x)Q = V, tanh (./a) 9 ,  (2.3) 

where f is a unit vector along the y axis and Vi > 0. 
Now we put 

$(x, Y, t )  = Y(x) + $(%, y, t ) ,  

where Y(x) and $(x, y, t )  are the undisturbed and disturbed parts of the stream func- 
tion, respectively, and expand the disturbed part $(x, y, t )  in a Fourier series with 
respect t o  y, namely 

$(G Y, 4 = z $p(x, t )  exp (@kY), (2.5) 
P 

where k is the wavenumber of the most unstable mode and the summation extends 
over p = 0, k 1 ,  k 2, ... . The reality of qi gives 

$; = $-v (2.6) 

where the asterisk denotes the complex conjugate. 

component, C(x, t ) ,  are expressed as 
The mean part of the stream function, $(x, t ) ,  and that of the longitudinal velocity 

- 
$(x, t )  = Y(X) + $ o ( ~ ,  t ) ,  q x ,  t )  = V(X) - a$o/ax. (2.7) 

Since we are primarily interested in the amplitude oscillation that may result from a 
periodic energy exchange between the mean flow and the fundamental mode, we shall 
disregard higher harmonics and retain only terms withp = 0, & I in (2.5). Substitution 
of (2.5) with p = 0, 1 into (2.1) and (2.2) yields a set of equations for each Fourier 
component which is solvable by a finite-difference method (see appendix). I n  the 
actual calculation, we have chosen the following normalization units of time (to), 
length ( L )  and stream function (Yo): 

to = y;:, L = 2a, Yo = L& = 2aV,, (2.8) 

where y,,,, denotes the linear growth rate for t,he most unstable mode. The values of 
ylln and k are determined by numericelly integrating the Rayleigh stability equation 
for an unbounded tanh velocity profile (Michalke 1964): 

ylln = 0.1897V,/a, k = 1/2*240a. (2.9) 
2-2 
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FIGURE 1. Temporal evolution of the disturbance amplitude lQll a t  z = 0 (solid curve) and the 
phase inclination factor 0,  defined in (2.14) (dashed curve). The temporal evolution of I 1 expected 
from the linear theory is shown by the dashed straight line. 

I n  our calculation, a bounded layer with boundary conditions a t  a finite distance 
is assumed. Namely, we put two plane boundaries on which 

$ = O  

at 2 = & 6, where 6 is chosen to  be 
b =  2 L .  

The following initial disturbance is chosen: 

$O(Z>O) = 0, 

Re [$,(x, O ) ]  = O~OIYc ,  cos (ns/26) cos (2.12) 

Im [$,(x, O ) ]  = O-OlY, cos ( n s / 2 b )  sin [insin ( n x / 2 b ) ] ,  

in sin (77x/2 

( 2 . 1 0 )  

( 2 . 1 1 )  

where Re and I m  denote the real and imaginary parts, respectively. 

the output of $,(x, t )  in terms of its absolute value and a phase angIe defined by 
I n  order to facilitate comparison with the theoretical result in 9 3, we shall express 

O,(x, t )  = arctan (Im #,/Re 9,). ( 2 . 1 3 )  

I n  practice, i t  may be more convenient to use, in place of O,(x, t ) ,  a phase inclination 
factor 0, defined by 

6, = L[a@,/ax],=,. ( 2 . 1 4 )  

The solid curve in figure 1 shows the time evolution of the amplitude Idl/ of the 
stream function normalized by Yo a t  the centre of the shear layer, while the dashed 
curve shows the evolution of the phase inclination factor 0, defined above. Until 
about r = 1.0 ( r  = t / t , )  the amplitude is seen to  continue to grow with a constant 
exponential slope from its initial value. For comparison, the time evolution expected 
from the linear theory is shown as a dashed straight line. The observed amplitude a t  
x = 0 becomes at r = 1.0 

 yo^ = 2.730 x lo-', (2.15) 
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FIGURE 2. Temporal variation of the patterns of the streamlines. 
Arrows indicate the flow direction. 

so that the observed growth rate is in good agreement with ylin. This good agreement 
between the linear theory and the numerical calculation ensures that the initial dis- 
turbance (2.12) adopted gives a good approximation to the exact eigenfunction of the 
Rayleigh stability equation for the unbounded case. From this figure i t  is seen that 
the amplitude reaches its first maximum a t  about 7 = 4,875, when 

l$JYol = 3 . 3 2 ~  lo-'. (2.16) 

After attaining the first maximum, it begins to  decrease and then grows, thereafter 
repeating a periodic excursion, i.e. it oscillates. The ensuing maximum amplitudes 
are found to be almost the same as the first one, given by (2.16). The first minimum 
appears a t  about r = 8.375 and its value is 

plpro1 = 9.63 x 10-2, (2.17) 

which roughly holds for the ensuing minima. The period To of the amplitude oscillation 

To M 7.0t0. (2.18) 
is about 

Let us turn our attention to  the time evolution of the phase inclination factor 8,. 
It is evident in the figure that 8, oscillates in accord with the amplitude oscillation. I n  
particular, 6, is positive while the amplitude is growing but negative while i t  is decaying 
and tends to  be zero whenever the amplitude approaches an extremum. These results 
strongly indicate that temporal variation of the phase function of the disturbance 
plays a crucial role in the amplitude oscillation process. 

The streamline patterns a t  different times are illustrated in figure 2. As can be seen 
from the top left panel of the figure, which corresponds to r = 1.0, the streamlines 
still remain rat'her straight,. For the panels corresponding to times after 7 = 2.0, 
however, we can recognize the appearance of clear-cut vortices. This figure does 
indicate t,hat the vortices exhibit a periodic nutation; that  is to say, the inclination of 
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FIGURE 3. Amplitude functions lhl of the disturbance at several different times. 

the major axes of the elliptical vortices with respect to the mean flow direction changes 
in a periodic manner. Detailed comparison between this and the time evolution of the 
amplitude shown in figure 1 makes it clear that the major axis of a vortex is inclined 
against the mean flow direction while the amplitude is growing but inclined towards 
the mean flow direction during the amplitude's decaying phase. Because of this 
similarity, it  may be said that this periodic behaviour of the vortex axis observed for 
the present unstaggered vortex row in a bounded shear layer is caused by the same 
process as wa5 obtained for two-dimensional staggered-vortex wakes by Zabusky & 
Deem (1971, figures 7 and 12). It may by conjectured, therefore, that the vortex 
nutation is an intrinsic feature of a two-dimensional inviscid flow arising from the 
interaction between the most unstable mode and the mean flow. 

Figure 3 shows the time evolution of the amplitude function. It grows until 
T = 4.875 and then decays. At T = 8.375 it reaches a minimum. It should be noted 
that the amplitude function keeps roughly its initial gentle form during the evolution. 
This fact enables us to make an analytical approach to this problem, because we must 
first resolve the difficult problem of finding the temporal evolution of the form of the 
eigenfunction if the eigenfunction evolves in a complex manner. 

Figure 4 shows the development of the phase function defined in (2.13). Until 
r = 4.875 the phase-angle profile, which is initially antisymmetric about x = 0, tends 
to be fairly flat, and a t  r = 4.875 and r = 8.375, when the amplitude attains an 
extremum, it becomes almost completely flat in the entire region. If we compare the 
profile a t  I- = 4.0 (in a growing phase) with that at 7 = 6.0 (in a decaying phase), we 
find a fairly good coincidence between their shapes. 

As we have seen above, it appears that the overall spatial functional forms of the 
amplitude and phase eigenfunctions during the course of the nonlinear evolution 
remain roughly the same as those in the linear stage. In  this regard, readers should 
notice a similar correspondence between the amplitude evolution and the phase 
evolution in the two-dimensional wakes examined by Zabusky & Deem ( 1  971, figures 
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FIGURE 4. Phase functions 0, of the disturbance (in radians) at  several different times. 
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FIGURE 6 .  The normalized mean velocity profiles V along the x axis a t  different times 
iri the growing period (t,op) and in tlic decaying period (bottom). 
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9, 1 1  and 12). Their results have clearly indicated that phase reversals occur whenever 
the axis of the elliptical primary vortex becomes parallel to the free-stream flow 
direction, the amplitude of the most unstable mode thereby reaching an extremum. 
An examination of their figure 9 (d )  shows that the phase profile in the growing period 
of the amplitude is similar to that in the decaying phase except for the sign. 

Figure 5 shows how the mean velocity profile V along the x axis is modified with time. 
Although the overall pattern of the mean flow is not drastically changed, the gradient 
(or curvature) of its profile in the vicinity of the centre of the shear layer is seen to  be 
modified considerably. Though not shown in this figure, the velocity profiles a t  
r = 2.0 and a t  r = 8-375 are almost coincident with the initial tanh profile. This near 
recurrence of the initial tanh profile is observed during the subsequent evolution. 
Prom the upper half of figure 5, i t  is seen that the mean velocity gradient is reduced 
during the growing period of the amplitude, while i t  steepens during the decaying 
period (see the lower half of the figure). It may be interesting to  note that such relax- 
ation of the mean velocity gradient during the growing period was also observed for 
two-dimensional staggered-vortex wakes (Zabusky & Deem 1971 ; Sat0 & Kuriki 
1961). Since the shear instability is very sensitive to the curvature of the mean velocity 
profile, it may be said that the temporal variation of the mean velocity profile is the 
cause of the amplitude oscillation. I n  the next section, we shall examine from the 
analytical side the relationship among the amplitude oscillation, the vortex nutation 
and the temporal variation of the mean flow. 

I n  passing, we shall give the accuracy of the present calculation. As a check on the 
accuracy of this computation, we have monitored the total (mean flow plus disturb- 
ance) kinetic energy given in (3.10) in the next section. We have confirmed that its 
variation was less than 0.1 yo throughout the computation. 

3. Theory of vortex nutation 

describes the vortex nutation. 

disturbance part,s yields 

I n  this section we shall devote ourselves to  deriving a nonlinear equation which 

Substituting (2.5) into (2.1) wit.h the aid of (2.2) and separating out the mean and 

where the summation extends over k' = k, & 2k, . . . unless otherwise specified. Note 
that  upon linearizing and replacing V ( 2 ,  t )  with V ( z ) ,  (3.2) reduces to the well-known 
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Rayleigh stability equation. Equation (3.1) can be integrated once with respect to  
x under the condition that iiQo/ii.r, Qk, + 0 ass+ 03 to yield 

I t  may be more convenient to  express (3.3) in t’ernis of t’he mean velocit,y V ,  i.e. 

This equation describes the distortion of the mean flow velocity through the Reynolds 
stress, which becomes significant in the nonlinear process. We shall now consider in 
more detail lion- the mean velocity is modified by an unstable disturbance of finite 
amplitude. We apply the quasi-linear analysis, which is now a classic method in the 
field of plasmas. If we replace iP/2t with w k m ( t ) ,  which is a slowly varying function of 
time, and neglect the mode-coupling ternis in (3.2),  we obtain the following quasi- 
linear dispersion equation: 

Combining this with (3.4) gives 

(3.5) 

where yr ( t )  denotes Im wr. This equation takes the form of a velocity (momentum) 
diffusion whose effective viscosity veff is proportional to the energy of the disturbance: 

What we have observed in figure 5 during the growing period of the disturbance 
ailiplitude can be explained by the velocity diffusion process described in (3.6) if we 

I n  the above quasi-linear analysis the time evolution of the disturbance phase is 
not explicit. However, as we have seen in 9 2 ,  i t  is certain that the phase evolution 
of the disturbance plays the leading role in the observed vortex nutation. Therefore, 
in order to elucidate the fundamental process giving rise to the vortex nutation, we 
must take into account the time evolution of the disturbance phase. We shall next 
attempt to obtain an equation that can explicitly describe the phase evolution. 

Since we have seen in $ 2  that only the nonlinear interaction between the mean 
flow and the most unstable mode is responsible for the observed vortex nutation, we 
shall retain only the dominant mode (k’ = k) on the right-hand side of (3.1), neglect 
the mode-coupling terms on the right-hand side of (3.2) and put k” = k. Then by 
multiplying (3.2) by 9: and adding the complex-conjugate equation, we obtain 

put k’ = 3. 
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where a dot over $k denotes differentiaOion with respect to t .  Similarly, by subtracting 
the conjugate equation, we obtain 

Equations (3.8) and (3.9), as we shall see later, describe the time evolution of the 
amplitude and the phase of the most unstable mode, respectively. We notice that the 
second derivative of the mean velocity, which has a strong influence upon the stability 
of a shear flow, appears on the right-hand side of (3.9)) which describes the phase 
evolution of the most unstable mode. 

Integration of (3.8) with respect to x over the entire region yields the following 
energy conservation equation : 

(3.10) 

where we have used (3.4) and the condition that $k ,  a$,/ax-+ 0 as x - f  _+ a. 
The complex amplitude y5k(x, t )  can be expressed in the form 

$&, t )  = t)[exp [i@,(x, t)l,  (3.11) 

where - 7r < O k ( Z ,  t )  6 7r. (3.12) 

In the nonlinear stage, and Ok depend on both x and t ,  and in general it  is very 
difficult to find a rigorous analytical solution of (3.4), (3.8) and (3.9). Fortunately, 
as we have seen in the previous section, the numerical analysis has guaranteed that the 
spatial dependence of both the amplitude and the phase function may be considered 
to be approximately time independent. Accordingly we shall express l#k(x, t ) (  and 
O,(x, t )  in the form 

1 4 k ( x ,  t ) l  = A ( t ) f ( x ) ,  @/c(~ ,  t ,  = o ( t ) f ? ( x ) ,  (3.13) 

wheref(z) and g(x) are so normalized thatf,,, = g,,, = 1. 
Substitution of (3.13) into (3.10) yields 

d[A2( 1 + 71 02) ] /d t  - 2rA20 = 0, (3.14) 

W 

where y1 = a-1 [ f 2 9 ' 2 d X )  ( 3 . 1 5 ~ )  

W 

with a = ( ( f ' 2 + k 2 9 2 ) d Z ,  (3.16) 
J - . O  

where a prime implies differentiation with respect to x. Next, we substitute (3.13) 
into (3.9)) multiply the result by y(x) and integrate to obtain 

(3.17) 
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where 

with 

r w  

h ( t )  = p-l/-w-m kvf 2gg‘2 d x ,  

p = 1 O3 [ ( k y  -ff”) g2 - (2sf’gg’ + gg’y)] ax. 
- w  

(3.18 a )  

(3.18 b )  

( 3 . 1 8 ~ )  

(3.18d) 

(3 .19)  

As can be seen from (3 .15 )  and (3 .18 ) )  the time-dependent coefficients I‘(t), h(t) and 
p(t)  arc the functions of mean velocity V(x, t ) ,  whose time evolution is described, by 
substituting (3 .13 )  into ( 3 . 4 ) ,  by 

- av = 2kA2BZ d ( fz$) 
at (3 .20)  

This equation indicates that the temporal variation of the mean velocity is directly 
proportiona,l to 0, and hence the inclination of the vortex axis. An examination of 
figures 3 and 4 indicates that (f 2g’)’ is negative for x > 0 and positive for x c 0 in the 
present confined free shear layer. Thus 0 > 0 implies relaxation of the mean velocity 
gradient, whereas 8 < 0 implies steepening. This correspondence between the evolu- 
tion of the mean velocity and that of the phase inclination is consistent with what we 
have observed in 9 2 (see figures 1 and 5 ) .  

We thus have arrived at a closed set of equations (3 .14) ,  (3 .17 )  and (3 .20)  that can 
adequately describe the time evolution of the amplitude, phase and mean velocity. 

The amplitude equation (3 .14)  can be rewritten as 

d A z  J?-y18 - = - 20A2. 
dt i + Y , e z  

(3 .21)  

In§ 2 we have shown for the confined free shear layer that, after attaining the maximum 
amplitude (8, = 0) ,  the linearly excited most unstable (dominant) mode undergoes 
an oscillatory behaviour in amplitude in conjunction with the oscillation of 8, around 
0, = 0. As can be seen from figure 1 ,  the phase inclination factor 0 a t  the centre of the 
shear layer can reasonably be assumed to satisfy O2 Q 1 .  Since f ’  x f/l x kf and 
g’ g/1 w kg, it  turns out that yl,  yz  and y3  are all of order unity, i.e. O(1) .  Thus 
we can reasonably neglect the terms y1 d2 and y1 in (3.21 ) as higher-order corrections 

dAz/dt  = 2F0A2. (3.22) 
to obtain 

This indicates that the growth rate of the most unstable mode is given approximately 
by I70 in the nonlinear stage. From (3 .15b)  we immediately find that r ( t )  does not 
change its sign unless the mean velocity reverses its direction. Therefore (3 .22)  implies 
that the oscillation of 0 around zero would result in an amplitude oscillation. It is 
further deduced from (3 .20)  that a periodic modulation of the mean velocity would 
also arise as a result of the oscillation of 0. 

Since we have been able to establish that the oscillation of 0 around zero (vortex 
nutation) is a fundamental process giving rise to the amplitude oscillation and the 
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periodic mean velocity modulation, let us turn our attention to  the phase evolution 
described in (3.17). Substituting (3.21) into (3.17) and expanding the second term of 
(3.17) in powers of 0, we obtain the following equation: 

d +p + ( y z  r -y3p  + A )  6 ’ ~ - ~ ,  y2e2e + o(04) = 0. (3.23) 

By differentiating p, r and h with respect to  t and making use of (3.20)) we obtain 
the following differential equations: 

j = 62A20, fi = - e 0 2 ~ 2 e ,  ji = - 662A20, (3.24 a-C) 
W 

where [ f2g(f2g’)” ’  +g(k2f2 -f) (f2g’)‘l ax, ( 3.25 a )  
- m  

e = 2k2a-16-2j-wm [( f 2g’)’]2 dx, (3.253) 

m 

6 = - 2k2P-19-2 [ f 2g( f 2g’)’g’2 dx. (3.2 5 c ) 
J - w  

Upon differentiation of (3.23) with respect to  t ,  it is further reduced to 

8 + 62A2e + qe6 - & 3 2 ~ 2 0 3  - y1 yz o(e8+ 262) + o(04) = 0, (3.26) 

where r( t )  = 2(y,r-Yy,P++h), E = Y Z E + Y 3 f J .  (3.27) 

From (3.22) and (3.24) it is seen that the deviations of A2, p, l? and h from their values 
for 0 = 0 axe of the order of 0, (the maximum deviation of 6‘). Furthermore it follows 
from (3.25) that  e and 6 are O(1).  With these considerations in mind (3.26) can be 
reduced to the following equation: 

8’+ Czi2AL 0 + €[0 (02) ]  = 0, (3.28) 

where A, is the amplitude at 0 = 0 and e[0(02)] contains the terms higher than 02. 
Therefore a t  the lowest order., the phase inclination factor 0 can be expressed as a 
harmonic oscillation : 

(3.29) 

where BnL > 0 and a = &A,,. (3.30) 

I n  (3.29) we have added a minus sign so that t = 0 in bhe above expression corresponds 
to r = 4.875 in figure 1. Combining (3.23) and (3.243) yields 

This may be integrated immediately to  give 

r2 = r p  + (€62/r;) ( ~ 5 ~ 7 1 ,  

(3.31) 

(3.32) 

where r0 is the value a t  0 = 0. Since r0 = O(yl,,) and 6 z 2+k2, it is readily seen that 
the second term on the right-hand side of (3.32) is negligible compared with unity. It 
then follows that I? z Po is a good approximation. This allows us to integrate (3.22) 
t o  give 

A ( t )  = A,exp{-(I‘,B,/Cl) [I -sin(Clt+&r)]}. (3.33) 

We thus have obtained the phase inclination factor 0 and the amplitude A as a function 
of time. It should be noted that the phase difference of 47r between 0 and A is consistent 
with what we have observed in figure 1 .  
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The period of the vortex nutation is given by 

T = 2n/GAn,.  

If we substitute G M 26k2 into (3 .34 ) ,  then we obtain 

n 4 a  
26 kA, ' 

T Z - -  

45 

(3 .34)  

(3 .35 )  

The physical interpretation of (3 .35 )  is as follows: kA, represents the order of 
magnitude of the induced velocity of fluid particles perpendicular to  the mean flow. 
The characteristic length 2a can be interpreted as a representative primary-vortex 
size in the direction perpendicular to  the mean flow direction. Therefore (3 .35 )  implies 
that  the period of the vortex nutation is roughly the time required for fluid particles 
trapped in a vortex to travel one full circle. I n  other words, in the nonlinear stage, 
fluid particles trapped in a vortex travel around a full circle with a period of order T 
under the influence of the induced disturbance field of finite amplitude. Since these 
fluid particles transport momentum, they cause a cyclic variation in the mean velocity 
profile. If there is a phase difference between the mean velocity variation and the 
growth of the disturbance, oscillatory behaviour will appear in the amplitude 
evolution. 

Let us now compare the period T given in (3 .34 )  with that from the numerical 
calculations in 8 2.  I n  order to  determine (3 precisely, it is necessary to know f (x) 
and g(x), both of which must be calculated from the exact eigenfunctions. However, 
indead of seeking the exact eigenfunctions, we shall use the following simple forms: 

f(x) = cos(kzr), g(x) = sin(kzx). (3 .36)  

This simplification may be justified from the numerical fact in Q 2 that  such a disturb- 
ance has grown with a growth rate which is almost equal to  the exact linear growth 
rate. We make the approximation k, x k in (3 .36 ) ,  namely that the characteristic 
length of the eigenfunction is about equal to the longitudinal wavelength of the most 
unstable mode. By letting k, = k and replacing the integral limits with & r / 2 k x  in 
(3 .19 )  and (3 .25 ) ,  we obtain 

Substitution of (3 .37 )  and the numerically obtained maximum amplitude A ,  given 

T x 6-76t0. (3 .38)  
by (2 .16 )  into (3 .34 )  gives 

I n  view o f  the approximations we have made [neglect of higher-order terms in 0 and 
approximation of the eigenfunctions by ( 3 . 3 6 ) ] ,  the agreement between the numerical 
result (2 .18)  (To !.z 7.0t0) and (3 .38 )  can be considered quite satisfactory. 

D = 1*34k2, = 0.542. (3 .37 )  

4. Discussions and conclusions 
We have shown numerically and analytically that nonlinear interaction between 

the most unstable mode and the mean Aow leads to amplitude oscillation and vortex 
nutation in the nonlinear stage. 

The two-dimensional, incompressible, inviscid Navier-Stokes equation is identical 
to  the guiding-centre description of the Vlasov equation for k,, = 0 (flute-mode 
assumption) and k1pi < 1 ,  where k,, and kL are the wavenumbers parallel and 
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perpendicular to the magnetic field, pi being the ion Larmor radius, if y3 and [in (2.1) 
and (2.2) are read as the electric potential and the charge density, respectively (see, 
for example, Vahala & Montgomery 1971). This suggests that the amplitude oscilla- 
tion or the quasi-periodic energy exchange between the mean flow and the most 
unstable mode observed by Levy & Hockney (1968) in their numerical experiment for 
a low density magnetized electron beam can also be explained by the present theory. 

It may be interesting to note a resemblance between the amplitude oscillation for 
shear flow (sheared macroplasma) and that in a microplasma, like that noted between 
a macroplasma and a microplasma by Sat0 (1975). It is well known (O’Neil 1965; 
Al’tshul’ & Karpman 1966) that resonant electrons trapped by a finite amplitude 
wave perform a cyclic motion in phase space. These electrons cause a cyclic variation 
in the resonant part of the velocity distribution function which in turn gives rise to 
an oscillation in the wave amplitude. If we compare the mean velocity distribution 
in fluids (or macroplasmas) to the velocity distribution in microplasmas, a similarity 
between them can be seen. In  a microplasma it is said that the quasi-periodic oscilla- 
tion of the wave amplitude disappears owing to phase mixing as time elapses (O’Neil 
1965). Similarly, in the present case the initial phase of the disturbance will be lost 
and the amplitude oscillation will eventually disappear owing to phase mixing among 
higher harmonics which are inevitably excited by nonlinear mode couplings. 

Before concluding this paper we briefly summarize the principal results that we 
have obtained. 

(i) We have been able to show synergetically that the vortex nutation (amplitude 
oscillation) results from a strong nonlinear coupling between the disturbance amplitude 
(vorticity) and the phase. By assuming that both the amplitude function and the 
phase function keep the same spatial dependence as the linear eigenfunctions, we 
have been able to resolve the nonlinear coupled equations approximately into simple 
solvable equations. The solution is found to be in good agreement with the numerical 
solution. 

(ii) Some physical interpretation of the vortex nutation is made. The oscillation 
period is interpreted as the period of cyclic motion of fluid particles in a vortex (see 
Christiansen & Zabusky 1973). 

(iii) On the basis of the quasi-linear analysis it is shown that the temporal evolution 
of the mean flow is described by a diffusion equation. The effective viscosity is pro- 
portional to the energy of the disturbance. 

The authors wish to thank Prof. T. Oguti and T. Tamao for valuable discussions and 
criticisms. This work was partially supported by Grants-in-Aid for Scientific Research 
(No. 1641 12) from the Ministry of Education in Japan. 

Appendix 
Substitution of (2.5) into ( 2 . 2 ~ )  yields 

a2#q/ax2 - qw+,  = - (4 = 0, 1 1, (A 1) 
where Cq is the qth Fourier component of f;. This Poisson equation is then expressed 
in finite-difference form as 
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wherej = 1 , 2 ,  . . . , J .  This gives a set of simultaneous linear equations whose cocfficient 
matrix is tridiagonal. After separating out the real and imaginary parts, (A 2) can 
easily be transformed into a form amenable to  numerical integration. Time integration 
of Q is performed by simply multiplying the Fourier-expanded form of (2.1) by At. 
In the actual calculation we have used Ax = 0.04L and At = 2-1°t0 (see (2.8) for L and 
t o ) ,  which well satisfy the stability condition 

Ax/At  % V,. 
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